Comparison of phase field crystal and molecular dynamics simulations for a shrinking grain

B. Radhakrishnan, S. B. Gorti, D. M. Nicholson, J. Dantzig

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations

Abstract

The Phase-Field Crystal (PFC) model represents the atomic density as a continuous function, whose spatial distribution evolves at diffusional, rather than vibrational time scales. PFC provides a tool to study defect interactions at the atomistic level but over longer time scales than in molecular dynamics (MD). We examine the behavior of the PFC model with the goal of relating the PFC parameters to physical parameters of real systems, derived from MD simulations. For this purpose we model the phenomenon of the shrinking of a spherical grain situated in a matrix. By comparing the rate of shrinking of the central grain using MD and PFC we obtain a relationship between PFC and MD time scales for processes driven by grain boundary diffusion. The morphological changes in the central grain including grain shape and grain rotation are also examined in order to assess the accuracy of the PFC in capturing the evolution path predicted by MD.

Original languageEnglish
Article number012043
JournalJournal of Physics: Conference Series
Volume402
Issue number1
DOIs
StatePublished - 2012
Event23rd Conference on Computational Physics, CCP 2011 - Gatlinburg, TN, United States
Duration: Oct 30 2012Nov 3 2012

Fingerprint

Dive into the research topics of 'Comparison of phase field crystal and molecular dynamics simulations for a shrinking grain'. Together they form a unique fingerprint.

Cite this