Comparison of detachment in Ohmic plasmas with positive and negative triangularity

the EUROfusion Tokamak Exploitation Team, the TCV Team

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In recent years, negative triangularity (NT) has emerged as a potential high-confinement L-mode reactor solution. In this work, detachment is investigated using core density ramps in lower single null Ohmic L-mode plasmas across a wide range of upper, lower, and average triangularity (the mean of upper and lower triangularity: δ) in the TCV tokamak. It is universally found that detachment is more difficult to access for NT shaping. The outer divertor leg of discharges with δ ≈ − 0.3 could not be cooled to below 5 eV through core density ramps alone. The behavior of the upstream plasma and geometrical divertor effects (e.g. a reduced connection length with negative lower triangularity) do not fully explain the challenges in detaching NT plasmas. Langmuir probe measurements of the target heat flux widths (λ q ) were constant to within 30% across an upper triangularity scan, while the spreading factor S was lower by up to 50% for NT, indicating a generally lower integral scrape-off layer width, λ int. The line-averaged core density was typically higher for NT discharges for a given fuelling rate, possibly linked to higher particle confinement in NT. Conversely, the divertor neutral pressure and integrated particle fluxes to the targets were typically lower for the same line-averaged density, indicating that NT configurations may be closer to the sheath-limited regime than their PT counterparts, which may explain why NT is more challenging to detach.

Original languageEnglish
Article number065005
JournalPlasma Physics and Controlled Fusion
Volume66
Issue number6
DOIs
StatePublished - Jun 2024

Funding

This work has been carried out within the framework of the EUROfusion Consortium, partially funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). The Swiss contribution to this work has been funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Commission or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them. This work was supported in part by the Swiss National Science Foundation. This work was supported in part by the US Department of Energy under Award Number DE-SC0010529.

Keywords

  • TCV
  • detachment
  • divertor
  • negative triangularity
  • power exhaust

Fingerprint

Dive into the research topics of 'Comparison of detachment in Ohmic plasmas with positive and negative triangularity'. Together they form a unique fingerprint.

Cite this