TY - JOUR
T1 - Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities
AU - Shakya, Migun
AU - Quince, Christopher
AU - Campbell, James H.
AU - Yang, Zamin K.
AU - Schadt, Christopher W.
AU - Podar, Mircea
PY - 2013/6
Y1 - 2013/6
N2 - Next-generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities.
AB - Next-generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities.
UR - http://www.scopus.com/inward/record.url?scp=84878647680&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.12086
DO - 10.1111/1462-2920.12086
M3 - Article
C2 - 23387867
AN - SCOPUS:84878647680
SN - 1462-2912
VL - 15
SP - 1882
EP - 1899
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 6
ER -