Abstract
The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c. Above c, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.
Original language | English |
---|---|
Article number | 097801 |
Journal | Physical Review Letters |
Volume | 118 |
Issue number | 9 |
DOIs | |
State | Published - Mar 3 2017 |
Funding
This work was supported by the Natural Sciences and Engineering Research Council of Canada. A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We acknowledge Mohana Yethiraj for advice and useful discussions.
Funders | Funder number |
---|---|
Office of Science | |
Oak Ridge National Laboratory | |
Natural Sciences and Engineering Research Council of Canada |