Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy

Samantha Wicks, Katyayani Seal, Stephen Jesse, Varatharajan Anbusathaiah, Sarah Leach, R. Edwin Garcia, Sergei V. Kalinin, Valanoor Nagarajan

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Grain-to-grain long-range interactions and the ensuing collective dynamics in the domain behavior of nanostructured polycrystalline Pb(Zr,Ti)O3 ferroelectric thin films have been investigated. To identify the key factors and interactions controlling local polarization dynamics we utilize a synergistic approach based on focused ion beam (FIB) milled damage-free nanostructures to isolate single grains and grain clusters, time-resolved piezoresponse force microscopy and switching spectroscopy PFM (SSPFM) (PFM) to address polarization dynamics within individual grains, and finite-element simulations to quantify the local ferroelectric interactions and hence assess the weight of several possible switching mechanisms. The experiments find that of the three possible switching mechanisms, namely direct electromechanical coupling, local built-in electric field and strain, and grain boundary electrostatic charges, the last one is the dominant mechanism. Although finite-element simulations find that direct electromechanical coupling and local built-in field-induced switching are possible, calculations confirm that for the utilized material properties, the aforementioned mechanisms are energetically unfavored.

Original languageEnglish
Pages (from-to)67-75
Number of pages9
JournalActa Materialia
Volume58
Issue number1
DOIs
StatePublished - Jan 2010

Keywords

  • Ferroelectricity
  • Nanostructure
  • Piezoelectricity

Fingerprint

Dive into the research topics of 'Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy'. Together they form a unique fingerprint.

Cite this