Abstract
Metastable phases present a promising route to expand the functionality of complex materials. Of particular interest are light-induced metastable phases that are inaccessible under equilibrium conditions, as they often host new, emergent properties switchable on ultrafast timescales. However, the processes governing the trajectories to such hidden phases remain largely unexplored. Here, using time- and angle-resolved photoemission spectroscopy, we investigate the ultrafast dynamics of the formation of a hidden quantum state in the layered dichalcogenide 1T-TaS2 upon photoexcitation. Our results reveal the nonthermal character of the transition governed by a collective charge-density-wave excitation. Using a double-pulse excitation of the structural mode, we show vibrational coherent control of the phase-transition efficiency. Our demonstration of exceptional control, switching speed, and stability of the hidden state are key for device applications at the nexus of electronics and photonics.
Original language | English |
---|---|
Article number | adi4661 |
Journal | Science Advances |
Volume | 9 |
Issue number | 47 |
DOIs | |
State | Published - Nov 2023 |
Externally published | Yes |
Funding
discussions. Funding: This work was funded by the Max Planck Society, the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant no. ERC-2015-CoG-682843 and OPTOlogic 899794), the German Research Foundation (DFG) under the Emmy Noether program (grant no. RE 3977/1), the SFB/TRR 227 Ultrafast Spin Dynamics (projects A09 and B07, project-ID 328545488), the priority program SPP2244 (project-ID 443366970), and the DFG research unit FOR 1700. T.P. acknowledges financial support from the Alexander von Humboldt Foundation. The work by P.S.K., J.A.S., S.Y., D.L., R.G.M., and Z.-X.S. at Stanford and SLAC was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. D.L. acknowledges support from the Swiss National Science Foundation, under fellowship no. P300P2_151328. S.Y. acknowledges support from the Stanford Graduate Fellowship. Author contributions: L.R., D.M., and J.M. Acknowledgments:W ethankP .Sutar(JožefStefanInstitute)forprovidingthesamples.W e thankT .Ritschel(T echnische UniversitätDresden),M.A.Sentef,D.B.Shin(MPIfortheStructure andDynamicsofMatter),M.Müller,andL.Jiajun(PaulScherrerInstitut)forenlightening discussions.Funding:ThisworkwasfundedbytheMaxPlanckSociety,theEuropeanResearch Council (ERC) under the European Union’s Horizon 2020 research and innovation progr am (grantno.ERC-2015-CoG-682843andOPTOlogic899794),theGermanResearchFoundation (DFG)undertheEmmyNoetherprogram(grantno.RE3977/1),theSFB/TRR227UltrafastSpin Dynamics(projectsA09andB07,project-ID328545488),thepriorityprogramSPP2244(project-ID 443366970), and theDFG researchunit FOR 1700. T .P . acknowledges financialsupport from theAlexandervonHumboldtFoundation.TheworkbyP .S.K., J.A.S.,S.Y ., D.L.,R.G.M.,andZ.-X.S. atStanfordandSLA CwassupportedbytheDepartmentofEnergy,OfficeofBasicEnergy Sciences,DivisionofMaterialsScienceandEngineering.D.L.acknowledgessupportfromthe SwissNationalScienceFoundation,underfellowshipno.P300P2_151328.S.Y .acknowledges supportfromtheStanfordGraduateFellowship.Authorcontributions:L.R.,D.M.,andJ.M. conceivedtheexperiment.J.M.,S.D.,J.S.,T .P ., S.B.,andL.R.carriedouttheXUVtrARPES experiments.P .S.K., J.A.S.,S.Y ., D.L.,andR.G.M.carriedoutthe6-eVlaserARPESexperiments.Y . A.G.conductedandanalyzedtheSTMexperiments.J.M.analyzedthedatawithsupportfromL. R.andJ.S.J.M.wrotethemanuscriptwithsupportfromL.R.,Y .A.G., andD.M.L.R.,R.E.,M.W ., and Z.-X.S.pro vided theexperimentalinfrastructure.Allauthorscommentedonthepaper. Competinginterests:Theauthorsdeclarethattheyhav enocompetinginterests.Dataand materialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentin the paper and/or the Supplementary Materials. The corresponding raw data files are publicly available at the Zenodo data repository under DOI 10.5281/zenodo.8238530.
Funders | Funder number |
---|---|
SFB | |
TRR 227 Ultrafast Spin Dynamics | 328545488, B07 |
U.S. Department of Energy | |
Alexander von Humboldt-Stiftung | |
Stanford University | |
Basic Energy Sciences | |
Horizon 2020 Framework Programme | |
Division of Materials Sciences and Engineering | |
European Research Council | |
Deutsche Forschungsgemeinschaft | 443366970, FOR 1700, grantno.RE3977/1, projectsA09andB07,project-ID328545488 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | P300P2_151328 |
Max-Planck-Gesellschaft | |
China Scholarship Council | |
Horizon 2020 | 899794, ERC-2015-CoG-682843 |