Coherent band excitations in CePd3: A comparison of neutron scattering and ab initio theory

Eugene A. Goremychkin, Hyowon Park, Raymond Osborn, Stephan Rosenkranz, John Paul Castellan, Victor R. Fanelli, Andrew D. Christianson, Matthew B. Stone, Eric D. Bauer, Kenneth J. McClellan, Darrin D. Byler, Jon M. Lawrence

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. The agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.

Original languageEnglish
Pages (from-to)186-191
Number of pages6
JournalScience
Volume359
Issue number6372
DOIs
StatePublished - Jan 12 2018

Funding

The research at the Joint Institute for Nuclear Research was supported by the Russian Foundation for Basic Research project 16-02-01086. The research at Argonne National Laboratory and Los Alamos National Laboratory was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research at Oak Ridge National Laboratory’s Spallation Neutron Source was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Neutron experiments were performed at the Spallation Neutron Source, Oak Ridge National Laboratory, and the ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory. We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. We are also grateful for useful discussions with P. Riseborough. Files containing the data sets used in this paper are available for download from http://dx.doi.org/doi:10.18126/ M2C914. Four-dimensional inelastic neutron scattering data from ARCS are stored in HDF5 files, conforming to the NeXus standard (www.nexusformat.org), which can be viewed using the open-source application, NeXpy (http://nexpy.github.io/nexpy/). The data can be compared with DFT+DMFT calculations, produced using the Wien2K+DMFT package (31), which are also stored in NeXus files. Inelastic neutron scattering data from MERLIN are available as RAR archives, containing files produced by the Horace suite of MATLAB programs (http://horace.isis.rl.ac.uk/), which can be used to extract cuts and slices through the 4D data.

FundersFunder number
Scientific User Facilities Division
U.S. Department of Energy
Basic Energy Sciences
Argonne National Laboratory
Oak Ridge National Laboratory
Los Alamos National Laboratory
Division of Materials Sciences and Engineering
Russian Foundation for Basic Research16-02-01086

    Fingerprint

    Dive into the research topics of 'Coherent band excitations in CePd3: A comparison of neutron scattering and ab initio theory'. Together they form a unique fingerprint.

    Cite this