Abstract
This study provides a comprehensive analysis of a novel battery system, which integrates a high-loading (∼5 mAh/cm2) cobalt-free cathode composed of lithium nickel manganese aluminum oxide (LiNi0.9Mn0.05Al0.05O2, NMA) into an all-solid-state cell for the first time. The argyrodite (Li6PS5Cl) solid electrolyte is used in conjunction with a 99 wt% silicon thin-film anode. Room temperature discharge capacities of >210 mAh/gNMA and > 170 mAh/gNMA were achieved at cycling rates of 0.05C and 0.25C, respectively. Electrochemical impedance spectroscopy measurements, taken during the first cycle detail onset of electrolyte degradation, lithiation of the silicon anode, and the change in charge transfer kinetics as a function of cell voltage. Raman, Fourier Transform Infrared, and X-ray photoelectron spectroscopy are used to identify the argyrodite degradation products that form in the catholyte on cycling, unveiling lithium carbonate as a potential source of oxygen-related degradation commonly alluded to in literature. Furthermore, high cell stack pressure, 350 MPa during fabrication, led to fracturing and pulverization of some cathode particles.
Original language | English |
---|---|
Article number | 113329 |
Journal | Journal of Energy Storage |
Volume | 99 |
DOIs | |
State | Published - Oct 1 2024 |
Funding
This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy's Vehicle Technologies Office (VTO) under the Low-Pressure All-Solid-State Cells project directed by Simon Thompson and Tien Duong and managed by Anthony Burrell. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was supported by the U.S. Department of Energy. This research was supported by the U.S. Department of Energy's Vehicle Technologies Office under the Advanced Battery Materials Research (BMR) Program, directed by Simon Thompson and Tien Duong. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was supported by the U.S. Department of Energy . This research was supported by the U.S. Department of Energy's Vehicle Technologies Office under the Advanced Battery Materials Research (BMR) Program, directed by Simon Thompson and Tien Duong. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
Keywords
- All-solid-state battery
- Argyrodite
- Nickel-rich cathode
- No‑cobalt cathode
- Pressure
- Pure silicon anode