Co-location Pattern Mining of Geosocial Data to Characterize Urban Functional Spaces

Arif Masrur, Gautam Thakur, Kevin Sparks, Rachel Palumbo, Donna J. Peuquet

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Spatial Co-location Pattern (SCP) mining continues to play a critical role in understanding the morphology of urban functional spaces of world cities. It requires a large amount of fine-granular data and computing efficiency to handle the combinatorial explosion of co-location patterns. To this end, this work has two main contributions-i) We showcase a novel approach to perform SCP mining to characterize intra-city scale structure of urban functionality or co-located activity patterns using geosocial Points-of-Interest (POI) vector data. ii) We present a generalized and optimized parallel/distributed SCP mining algorithm implemented on a Hadoop MapReduce system and demonstrate the utility of our approach using the city of Berlin (Germany) as an example. The SCPs tend to vary across Berlin's municipal boroughs and at different spatial scales. Our findings on Berlin's functional structure conform to existing urban geography models. Such a data-driven exploration of massive urban POIs using distributed computing is first of its kind and can help better understand the changing dynamics of urban functionality, as well as physical, and social network structure around the world.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditorsChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4099-4102
Number of pages4
ISBN (Electronic)9781728108582
DOIs
StatePublished - Dec 2019
Event2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duration: Dec 9 2019Dec 12 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
Country/TerritoryUnited States
CityLos Angeles
Period12/9/1912/12/19

Funding

This manuscript was co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government and the publisher, by accepting the article for publication, acknowledge that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

FundersFunder number
US Department of Energy
U.S. Department of Energy

    Keywords

    • MapReduce
    • Spatial data mining
    • co-location pattern
    • distributed computing
    • urban areas

    Fingerprint

    Dive into the research topics of 'Co-location Pattern Mining of Geosocial Data to Characterize Urban Functional Spaces'. Together they form a unique fingerprint.

    Cite this