Abstract
Big data applications are on the rise, and so is the number of data centers. The ever-increasing massive data pool needs to be periodically backed up in a secure environment. Moreover, a massive amount of securely backed-up data is required for training binary convolutional neural networks for image classification. XOR and XNOR operations are essential for large-scale data copy verification, encryption, and classification algorithms. The disproportionate speed of existing compute and memory units makes the von Neumann architecture inefficient to perform these Boolean operations. Compute-in-memory (CiM) has proved to be an optimum approach for such bulk computations. The existing CiM-based XOR/XNOR techniques either require multiple cycles for computing or add to the complexity of the fabrication process. Here, we propose a CMOS-based hardware topology for single-cycle in-memory XOR/XNOR operations. Our design provides at least 2× improvement in the latency compared with other existing CMOS-compatible solutions. We verify the proposed system through circuit/system-level simulations and evaluate its robustness using a 5000-point Monte Carlo variation analysis. This all-CMOS design paves the way for practical implementation of CiM XOR/XNOR at scaled technology nodes.
Original language | English |
---|---|
Pages (from-to) | 49528-49534 |
Number of pages | 7 |
Journal | IEEE Access |
Volume | 12 |
DOIs | |
State | Published - 2024 |
Keywords
- Artificial intelligence
- XNOR
- XOR
- compute-in-memory
- encryption
- verification