Abstract
The study of exfoliated 2D magnetic materials is a vibrant and rapidly progressing field and is impacting many areas of condensed matter research including fundamental magnetism, spintronics and optoelectronics, and topological spin and electronic systems. The availability of promising candidate materials has enabled much of the progress in this field. Here, I present my perspective on the development of cleavable magnetic materials with a focus on transition metal halides and chalcogenides and an emphasis on crystal structure and magnetic order. To give proper context for these discussions, brief and incomplete surveys of recent work are included, focusing on specific aspects that I find most useful for guiding work on emerging materials and motivating expansion into other compounds and material families. Several instances of structural changes that can differentiate behaviors of bulk and ultrathin specimens are noted. Probing and understanding potential structural differences present a challenge but also an opportunity for material and device development, if they can be predicted and controlled. It is clear that careful investigations of structure, layer stacking, and defects in materials, how they may relate to the crystal chemistry, and how they may be different in crystals and mono- or few-layer specimens provide invaluable context for understanding the behavior of van der Waals layered magnetic materials.
Original language | English |
---|---|
Article number | 110901 |
Journal | Journal of Applied Physics |
Volume | 128 |
Issue number | 11 |
DOIs | |
State | Published - Sep 21 2020 |
Funding
This paper has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this paper, or allow others to do so, for U.S. Government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The author gratefully acknowledges ongoing discussions and interactions with colleagues and collaborators, in particular, B. C. Sales, D. Mandrus, A. F. May, J.-Q. Yan, V. R. Cooper, X. Xu, and D. Xiao.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | |
Division of Materials Sciences and Engineering |