Abstract
Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence toward the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristine surfaces contain ions (e.g., Cl-) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. At higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.
Original language | English |
---|---|
Pages (from-to) | 29588-29593 |
Number of pages | 6 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 43 |
DOIs | |
State | Published - Nov 2 2016 |
Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC05-00OR22725.
Funders | Funder number |
---|---|
Office of Basic Energy Sciences | DE-AC05-00OR22725 |
U.S. Department of Energy | |
Office of Science |
Keywords
- atomic force microscopy
- chemical phenomena
- ferroelectric thin film
- ion intermixing
- polarization switching
- time-of-flight secondary ion mass spectrometry