Chemical solution deposition of PLZT films on base metal foils

D. J. Kim, D. Y. Kaufman, S. K. Streiffer, T. H. Lee, R. Erck, O. Auciello

Research output: Contribution to journalConference articlepeer-review

11 Scopus citations

Abstract

In an effort to develop cost effective, volumetrically efficient, high charge density and high energy density capacitors, Pb(Zr,Ti)O3 and La-doped Pb(Zr,Ti)O3 films were deposited by chemical solution deposition on nickel and alloy foils. PZT films deposited on bare foils exhibited lower permittivity and more electric field hysteresis compared to films deposited on platinized silicon substrates, due to the formation of low capacitance interfacial layers and/or diffusion of foil elements into the PZT. However, an ultimate dielectric breakdown strength of approximately 1.35 MV/cm was obtained for a film thickness of 1.8 μm, corresponding to a withstand voltage of 245 V. A reduced temperature dependence of capacitance was observed with decreasing film thickness. In order to improve the dielectric response, barrier layers of LaNiO3, Ru, or Ir were deposited on top of the metal foils used as substrates. The barrier improved relative permittivity and reduced hysteresis in relative permittivity as a function of dc bias.

Original languageEnglish
Pages (from-to)457-462
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume748
StatePublished - 2003
Externally publishedYes
EventFerroelectric Thin Films XI - Boston, MA, United States
Duration: Dec 2 2002Dec 5 2002

Fingerprint

Dive into the research topics of 'Chemical solution deposition of PLZT films on base metal foils'. Together they form a unique fingerprint.

Cite this