Abstract
The extraordinary optoelectronic performance of hybrid organic–inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current–voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic–inorganic perovskites, and offer an exploratory path to improving functional devices.
Original language | English |
---|---|
Pages (from-to) | 1013-1019 |
Number of pages | 7 |
Journal | Nature Materials |
Volume | 17 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2018 |
Funding
This research was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy (Y.L., A.I., B.D. and O.S.O.). The research was partially sponsored by the Air Force Office of Scientific Research (AFOSR) under grant no. FA 9550-15-1-0064, AOARD (FA2386-15-1-4104), and the National Science Foundation CBET-1438181 (M.A. and B.H.) and supported by the University of Tennessee, Knoxville (B.R.W. and T.R.C.). This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Funders | Funder number |
---|---|
US Department of Energy | |
National Science Foundation | CBET-1438181 |
Air Force Office of Scientific Research | FA2386-15-1-4104, FA 9550-15-1-0064 |
Oak Ridge National Laboratory | |
University of Tennessee |