Characterizing thermal expansion of large-scale 3D printed parts

Dylan Hoskins, Vlastimil Kunc, Ahmed Hassen, John Lindahl, Chad Duty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Additively manufactured parts have an inherent mesostructure as a result of printing artifacts. The build structure is defined by parameters such as infill pattern, raster spacing, and bead height, and can impart anisotropic thermo-mechanical properties that are different from the bulk properties of the feedstock. The anisotropy is more pronounced when printing with fiber reinforced polymers due to the shear-alignment of fibers during the extrusion process. This study evaluates the combined effects of the printed mesostructure and the fiber-aligned microstructure on the coefficient of thermal expansion of large-scale printed parts. A digital image correlation-based method for recording thermal strain across the surface of a printed part is described. Measured values are compared to predictions based on laminate theory using the anisotropic material properties at the microscale for common raster orientations.

Original languageEnglish
Title of host publicationSAMPE Conference and Exhibition
EditorsKevin Ahlstrom, Jacob Preston Anderson, Scott Beckwith, Andrew Craig Becnel, Paul Joseph Biermann, Matt Buchholz, Elizabeth Cates, Brian Gardner, Jim Harris, Michael J. Knight, German Reyes-Villanueva, Stephen E. Scarborough, Phil Sears, James Thomas, Erik T. Thostenson
PublisherSoc. for the Advancement of Material and Process Engineering
ISBN (Electronic)9781934551301
DOIs
StatePublished - 2019
EventSAMPE 2019 Conference and Exhibition - Charlotte, United States
Duration: May 20 2019May 23 2019

Publication series

NameInternational SAMPE Technical Conference
Volume2019-May

Conference

ConferenceSAMPE 2019 Conference and Exhibition
Country/TerritoryUnited States
CityCharlotte
Period05/20/1905/23/19

Fingerprint

Dive into the research topics of 'Characterizing thermal expansion of large-scale 3D printed parts'. Together they form a unique fingerprint.

Cite this