Abstract
Water molecules play a key role in all biochemical processes. They help define the shape of proteins, and they are reactant or product in many reactions and are released as ligands are bound. They facilitate the transfer of protons through transmembrane proton channel, pump and transporter proteins. Continuum electrostatics (CE) force fields used by program Multiconformation CE (MCCE) capture electrostatic interactions in biomolecules with an implicit solvent, which captures the averaged solvent water equilibrium properties. Hybrid CE methods can use explicit water molecules within the protein surrounded by implicit solvent. These hybrid methods permit the study of explicit hydrogen bond networks within the protein and allow analysis of processes such as proton transfer reactions. Yet hybrid CE methods have not been rigorously tested. Here, we present an explicit treatment of water molecules in the Gramicidin A (gA) channel using MCCE and compare the resulting distributions of water molecules and key hydration features against those obtained with explicit solvent Molecular Dynamics (MD) simulations with the nonpolarizable CHARMM36 and polarizable Drude force fields. CHARMM36 leads to an aligned water wire in the channel characterized by a large absolute net water dipole moment; the MCCE and Drude analysis lead to a small net dipole moment as the water molecules change orientation within the channel. The correct orientation is not as yet known, so these calculations identify an open question.
Original language | English |
---|---|
Article number | 2042001 |
Journal | Journal of Theoretical and Computational Chemistry |
DOIs | |
State | Accepted/In press - 2020 |
Externally published | Yes |
Keywords
- Monte Carlo
- Water simulation
- molecular dynamics
- polarized force field