Characterizing material transition for functionally graded material using big area additive manufacturing

Zeke Sudbury, Chad Duty, Vlastimil Kunc, Vidya Kishore, Christine Ajinjeru, Jordan Failla, John Lindahl

Research output: Contribution to conferencePaperpeer-review

14 Scopus citations

Abstract

This study examines functionally graded materials (FGM) on a polymer based large scale additive manufacturing system. FGM utilizes a less expensive material with sub-optimal mechanical properties for the majority of the part, and uses more expensive higher performance material in selected areas. This process aims to optimize cost with weight and mechanical performance. FGM is already used a variety of industries, but is not common place in additive manufacturing, specifically large scale additive manufacturing like Cincinnati Incorporated’s Big Area Additive Manufacturing (BAAM). BAAM can use a variety of plastic injection molding and extrusion style polymer pellets, which allows it to use both commodity materials and high performance engineering polymers. This study is an initial assessment of FGM using glass fiber reinforced ABS and carbon fiber reinforced ABS, and characterizes the performance of a density gradient shape function to characterize the blending of materials.

Original languageEnglish
Pages738-747
Number of pages10
StatePublished - 2016
Event27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016 - Austin, United States
Duration: Aug 8 2016Aug 10 2016

Conference

Conference27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016
Country/TerritoryUnited States
CityAustin
Period08/8/1608/10/16

Funding

Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

FundersFunder number
U.S. Department of Energy
Advanced Manufacturing OfficeDE-AC05-00OR22725
Office of Energy Efficiency and Renewable Energy

    Fingerprint

    Dive into the research topics of 'Characterizing material transition for functionally graded material using big area additive manufacturing'. Together they form a unique fingerprint.

    Cite this