TY - JOUR
T1 - Characterizations of polyamidoamine dendrimers with scattering techniques
AU - Wang, Xiangyu
AU - Guerrand, Ludovic
AU - Wu, Bin
AU - Li, Xin
AU - Boldon, Lauren
AU - Chen, Wei Ren
AU - Liu, Li
PY - 2012
Y1 - 2012
N2 - Dendrimers are highly branched, open, covalent assemblies of branch cells (monomers) radially attached to a core in successive layers or generations. Major types of dendrimers include polyamidoamine, polypropylenimine, multiple antigen peptide, chiral, and Fréchet-type dendrimers. Their structure and dynamics can be explored by various techniques, such as scattering, spectrometry, and microscopy techniques. Specifically, the scattering techniques include small-angle neutron scattering (SANS), quasi-elastic neutron scattering (QENS), small-angle X-ray scattering (SAXS), and light scattering. Examples of their properties that can be explored by scattering techniques include: inter-molecular structure, intra-molecular cavity, radius-of-gyration (RG), hydrodynamic radius (RH), molecular weight, effective charge number of a single dendrimer molecule, water penetration into the interior of the dendrimers, and the internal dynamics. Of these properties, the hydrodynamic radius and molecular weight may be explored by DLS; the internal dynamics of dendrimers may be studied by QENS; and the others may be explored through SAXS and SANS. During the past several years, SANS and QENS have been used to study the structural properties and internal dynamics of various generations of polyamidoamine dendrimers (PAMAMs). Their potential prospects as anticancer polymer drug carriers are also discussed.
AB - Dendrimers are highly branched, open, covalent assemblies of branch cells (monomers) radially attached to a core in successive layers or generations. Major types of dendrimers include polyamidoamine, polypropylenimine, multiple antigen peptide, chiral, and Fréchet-type dendrimers. Their structure and dynamics can be explored by various techniques, such as scattering, spectrometry, and microscopy techniques. Specifically, the scattering techniques include small-angle neutron scattering (SANS), quasi-elastic neutron scattering (QENS), small-angle X-ray scattering (SAXS), and light scattering. Examples of their properties that can be explored by scattering techniques include: inter-molecular structure, intra-molecular cavity, radius-of-gyration (RG), hydrodynamic radius (RH), molecular weight, effective charge number of a single dendrimer molecule, water penetration into the interior of the dendrimers, and the internal dynamics. Of these properties, the hydrodynamic radius and molecular weight may be explored by DLS; the internal dynamics of dendrimers may be studied by QENS; and the others may be explored through SAXS and SANS. During the past several years, SANS and QENS have been used to study the structural properties and internal dynamics of various generations of polyamidoamine dendrimers (PAMAMs). Their potential prospects as anticancer polymer drug carriers are also discussed.
KW - Anticancer
KW - Dendrimers
KW - Scattering techniques
UR - http://www.scopus.com/inward/record.url?scp=84861773026&partnerID=8YFLogxK
U2 - 10.3390/polym4010600
DO - 10.3390/polym4010600
M3 - Review article
AN - SCOPUS:84861773026
SN - 2073-4360
VL - 4
SP - 600
EP - 616
JO - Polymers
JF - Polymers
IS - 1
ER -