Abstract
Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f7 configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, 249Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison.We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state.
| Original language | English |
|---|---|
| Article number | aaf3762 |
| Journal | Science |
| Volume | 353 |
| Issue number | 6302 |
| DOIs | |
| State | Published - Aug 26 2016 |
| Externally published | Yes |