Abstract
Microstructural characterization was conducted for laboratory gasoline and natural gas reciprocating engine tested spark plug electrodes made from a range of model, developmental, and commercially available electrode alloys. These alloys were selected to explore the effects of differing electrode alloy thermal, chemical, and mechanical characteristics on erosion resistance, and were tested with and without sparking surface alloy insert pads (platinum group and novel Cr-based alloys). Extensive internal oxidation and cracking were observed in both gasoline and natural gas engine tests, indicative of an inherent degree of susceptibility of currently-used electrode materials when heated to elevated temperatures, no matter what the ignition conditions. Highlyalloyed heat-resistant alloys with excellent oxidation resistance in many high-temperature environments suffered from increased rates of erosion, as the gains in oxidation resistance appear to have been offset by hotter running temperatures resulting from decreased electrode alloy thermal conductivity. Promising early results were obtained with a novel Cr-6MgO- 0.5Ti-0.3La2O3 insert pad electrode alloy, investigated as an alternative to Pt- or Ir- base alloys, which showed little erosion and good resistance to cracking and oxidation.
Original language | English |
---|---|
Title of host publication | ASME 2007 Internal Combustion Engine Division Fall Technical Conference, ICEF 2007 |
Publisher | American Society of Mechanical Engineers (ASME) |
Pages | 675-683 |
Number of pages | 9 |
ISBN (Electronic) | 0791848116, 9780791848111 |
DOIs | |
State | Published - 2007 |
Event | ASME 2007 Internal Combustion Engine Division Fall Technical Conference, ICEF 2007 - Charleston, United States Duration: Oct 14 2007 → Oct 17 2007 |
Publication series
Name | ASME 2007 Internal Combustion Engine Division Fall Technical Conference, ICEF 2007 |
---|
Conference
Conference | ASME 2007 Internal Combustion Engine Division Fall Technical Conference, ICEF 2007 |
---|---|
Country/Territory | United States |
City | Charleston |
Period | 10/14/07 → 10/17/07 |
Funding
The authors thank I.G. Wright and J.H. Schneibel for helpful comments on this manuscript. The authors also thank R.K. Richards for extensive collaborations on spark plug behavior. This research was jointly sponsored by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Distributed Energy Materials Program and Advanced Reciprocating Engine Systems Program, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.