Abstract
Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.
Original language | English |
---|---|
Pages (from-to) | 1940-1947 |
Number of pages | 8 |
Journal | JOM |
Volume | 68 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2016 |
Funding
This research was sponsored by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was performed under the auspices of the U.S. Department of Energy with Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and with Oak Ridge National Laboratory under U.S. Department of Energy contract DE-AC05-00OR22725. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 3D printed molds and engine testing was funded by Oak Ridge National Laboratory Directed Research and Development funds. We acknowledge the support of Scott Curran and Claus Daniel with engine assembly and testing.