Abstract
The kagome lattice of transition metal atoms provides an exciting platform to study electronic correlations in the presence of geometric frustration and nontrivial band topology1–18, which continues to bear surprises. Here, using spectroscopic imaging scanning tunnelling microscopy, we discover a temperature-dependent cascade of different symmetry-broken electronic states in a new kagome superconductor, CsV3Sb5. We reveal, at a temperature far above the superconducting transition temperature Tc ~ 2.5 K, a tri-directional charge order with a 2a0 period that breaks the translation symmetry of the lattice. As the system is cooled down towards Tc, we observe a prominent V-shaped spectral gap opening at the Fermi level and an additional breaking of the six-fold rotational symmetry, which persists through the superconducting transition. This rotational symmetry breaking is observed as the emergence of an additional 4a0 unidirectional charge order and strongly anisotropic scattering in differential conductance maps. The latter can be directly attributed to the orbital-selective renormalization of the vanadium kagome bands. Our experiments reveal a complex landscape of electronic states that can coexist on a kagome lattice, and highlight intriguing parallels to high-Tc superconductors and twisted bilayer graphene.
Original language | English |
---|---|
Pages (from-to) | 216-221 |
Number of pages | 6 |
Journal | Nature |
Volume | 599 |
Issue number | 7884 |
DOIs | |
State | Published - Nov 11 2021 |
Externally published | Yes |
Funding
Acknowledgements We thank K. Fujita and A. Pasupathy for valuable discussions. I.Z. gratefully acknowledges the support from the National Science Foundation grant no. NSF-DMR-1654041 and Boston College startup. S.D.W., B.R.O., L.B., S.M.L.T. and T.P. gratefully acknowledge support via the University of California Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i programme under award DMR-1906325. B.R.O. also acknowledges support from the California NanoSystems Institute through the Elings Fellowship programme. We acknowledge use of the shared computing facilities of the Center for Scientific Computing at University of California Santa Barbara, supported by NSF CNS-1725797, and the NSF Materials Research Science and Engineering Center at University of California Santa Barbara, NSF DMR-1720256. M.Y. is supported in part by the Gordon and Betty Moore Foundation through Grant GBMF8690 to UCSB. S.M.L.T. has been supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1650114. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Z.W. acknowledges the support of US Department of Energy, Basic Energy Sciences grant no. DE-FG02-99ER45747.
Funders | Funder number |
---|---|
Boston College startup | |
California NanoSystems Institute | |
NSF Materials Research Science and Engineering Center at University of California Santa Barbara | DMR-1720256 |
National Science Foundation | NSF-DMR-1654041 |
U.S. Department of Energy | |
Gordon and Betty Moore Foundation | GBMF8690, DGE-1650114 |
Basic Energy Sciences | DE-FG02-99ER45747 |
University of California, Santa Barbara | CNS-1725797, DMR-1906325 |