Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale

Fungmin Eric Liew, Robert Nogle, Tanus Abdalla, Blake J. Rasor, Christina Canter, Rasmus O. Jensen, Lan Wang, Jonathan Strutz, Payal Chirania, Sashini De Tissera, Alexander P. Mueller, Zhenhua Ruan, Allan Gao, Loan Tran, Nancy L. Engle, Jason C. Bromley, James Daniell, Robert Conrado, Timothy J. Tschaplinski, Richard J. GiannoneRobert L. Hettich, Ashty S. Karim, Séan D. Simpson, Steven D. Brown, Ching Leang, Michael C. Jewett, Michael Köpke

Research output: Contribution to journalArticlepeer-review

254 Scopus citations

Abstract

Many industrial chemicals that are produced from fossil resources could be manufactured more sustainably through fermentation. Here we describe the development of a carbon-negative fermentation route to producing the industrially important chemicals acetone and isopropanol from abundant, low-cost waste gas feedstocks, such as industrial emissions and syngas. Using a combinatorial pathway library approach, we first mined a historical industrial strain collection for superior enzymes that we used to engineer the autotrophic acetogen Clostridium autoethanogenum. Next, we used omics analysis, kinetic modeling and cell-free prototyping to optimize flux. Finally, we scaled-up our optimized strains for continuous production at rates of up to ~3 g/L/h and ~90% selectivity. Life cycle analysis confirmed a negative carbon footprint for the products. Unlike traditional production processes, which result in release of greenhouse gases, our process fixes carbon. These results show that engineered acetogens enable sustainable, high-efficiency, high-selectivity chemicals production. We expect that our approach can be readily adapted to a wide range of commodity chemicals.

Original languageEnglish
Pages (from-to)335-344
Number of pages10
JournalNature Biotechnology
Volume40
Issue number3
DOIs
StatePublished - Mar 2022

Funding

We would like to thank members of LanzaTech’s Synthetic Biology, Strain Development, Process Integration, Analytics, Engineering Design & Development, AI & Modeling, Computational Biology and Freedom Pines teams for their support and conversations about this work, in particular A. Juminaga, A. Quattlebaum, A. Shah, J. Winkler, J. Cogan, L. Fantroy, M. Maas, M. Martin, N. Gayner, N. Fackler, R. C. Tappel, S. Nagaraju, S. Chong, V. Reynoso, W. P. Mitchell and W. Allen. We would also like to thank the Joint Genome Institute DNA synthesis team for their support and conversations on this work, in particular J.-F. Chen, M. Harmon-Smith, R. Evans and Y. Yoshikuni. Funding: Acetone strain and process development, genome-scale modeling, LCA work and initial pilot runs were supported by the U.S. Department of Energy Bioenergy Technologies Office under contract nos. DE-EE0007566 and CRADA/NFE-16-06364 between LanzaTech and the Oak Ridge National Laboratory (F.L., R.N., T.A., C.C., R.O.J., L.W., J.S., P.C., S.D.T., Z.R., A.G., L.T., N.L.E., J.C.B., J.D., R.C., T.J.T., R.J.G., R.L.H., S.D.S., S.D.B., C.L. and M.K.). Cell-free prototyping work was funded by the U.S. Department of Energy Office of Science, Biological and Environmental Research Division, Genomic Science Program, under contract nos. DE-SC0018249 and FWP ERKP903 (F.L., B.J.R., R.O.J., N.L.E., T.J.T., R.J.G., R.L.H., A.S.K., S.D.S., S.D.B., M.C.J. and M.K.). This manuscript was co-authored by UT-Battelle under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy (T.J.T., N.L.E., R.J.G. and R.L.H.). DNA synthesis for the gene libraries was supported by the Joint Genome Institute Community Science Program under award no. CSP-503280; https://doi.org/10.46936/10.25585/60001121 (M.C.J. and M.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337 ), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under contract no. DE-AC02-05CH11231. B.J.R. is supported by a National Defense Science and Engineering Graduate Fellowship (award ND-CEN-017-095). We also thank the following investors in LanzaTech’s technology: BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil Company, K1W1, Khosla Ventures, the Malaysian Life Sciences Capital Fund, L. P., Mitsui, the New Zealand Superannuation Fund, Novo Holdings A/S, Petronas Technology Ventures, Primetals, Qiming Venture Partners, Softbank China and Suncor. We would like to thank members of LanzaTech’s Synthetic Biology, Strain Development, Process Integration, Analytics, Engineering Design & Development, AI & Modeling, Computational Biology and Freedom Pines teams for their support and conversations about this work, in particular A. Juminaga, A. Quattlebaum, A. Shah, J. Winkler, J. Cogan, L. Fantroy, M. Maas, M. Martin, N. Gayner, N. Fackler, R. C. Tappel, S. Nagaraju, S. Chong, V. Reynoso, W. P. Mitchell and W. Allen. We would also like to thank the Joint Genome Institute DNA synthesis team for their support and conversations on this work, in particular J.-F. Chen, M. Harmon-Smith, R. Evans and Y. Yoshikuni. Funding: Acetone strain and process development, genome-scale modeling, LCA work and initial pilot runs were supported by the U.S. Department of Energy Bioenergy Technologies Office under contract nos. DE-EE0007566 and CRADA/NFE-16-06364 between LanzaTech and the Oak Ridge National Laboratory (F.L., R.N., T.A., C.C., R.O.J., L.W., J.S., P.C., S.D.T., Z.R., A.G., L.T., N.L.E., J.C.B., J.D., R.C., T.J.T., R.J.G., R.L.H., S.D.S., S.D.B., C.L. and M.K.). Cell-free prototyping work was funded by the U.S. Department of Energy Office of Science, Biological and Environmental Research Division, Genomic Science Program, under contract nos. DE-SC0018249 and FWP ERKP903 (F.L., B.J.R., R.O.J., N.L.E., T.J.T., R.J.G., R.L.H., A.S.K., S.D.S., S.D.B., M.C.J. and M.K.). This manuscript was co-authored by UT-Battelle under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy (T.J.T., N.L.E., R.J.G. and R.L.H.). DNA synthesis for the gene libraries was supported by the Joint Genome Institute Community Science Program under award no. CSP-503280; https://doi.org/10.46936/10.25585/60001121 (M.C.J. and M.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute ( https://ror.org/04xm1d337 ), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under contract no. DE-AC02-05CH11231. B.J.R. is supported by a National Defense Science and Engineering Graduate Fellowship (award ND-CEN-017-095). We also thank the following investors in LanzaTech’s technology: BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil Company, K1W1, Khosla Ventures, the Malaysian Life Sciences Capital Fund, L. P., Mitsui, the New Zealand Superannuation Fund, Novo Holdings A/S, Petronas Technology Ventures, Primetals, Qiming Venture Partners, Softbank China and Suncor.

Fingerprint

Dive into the research topics of 'Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale'. Together they form a unique fingerprint.

Cite this