Capacitance of thin films containing polymerized ionic liquids

Rajeev Kumar, Jyoti P. Mahalik, Kevin S. Silmore, Zaneta Wojnarowska, Andrew Erwin, John F. Ankner, Alexei P. Sokolov, Bobby G. Sumpter, Vera Bocharova

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Electrode-polymer interfaces dictate many of the properties of thin films such as capacitance, the electric field experienced by polymers, and charge transport. However, structure and dynamics of charged polymers near electrodes remain poorly understood, especially in the high concentration limit representative of the melts. To develop an understanding of electric field–induced transformations of electrode-polymer interfaces, we have studied electrified interfaces of an imidazolium-based polymerized ionic liquid (PolyIL) using combinations of broadband dielectric spectroscopy, specular neutron reflectivity, and simulations based on the Rayleigh’s dissipation function formalism. Overall, we obtained the camel-shaped dependence of the capacitance on applied voltage, which originated from the responses of an adsorbed polymer layer to applied voltages. This work provides additional insights related to the effects of molecular weight in affecting structure and properties of electrode-polymer interfaces, which are essential for designing next-generation energy storage and harvesting devices.

Original languageEnglish
Article numbereaba7952
JournalScience Advances
Volume6
Issue number26
DOIs
StatePublished - Jun 2020

Fingerprint

Dive into the research topics of 'Capacitance of thin films containing polymerized ionic liquids'. Together they form a unique fingerprint.

Cite this