TY - GEN
T1 - Byte-precision level of detail processing for variable precision analytics
AU - Jenkins, John
AU - Schendel, Eric R.
AU - Lakshminarasimhan, Sriram
AU - Boyuka, David A.
AU - Rogers, Terry
AU - Ethier, Stephane
AU - Ross, Robert
AU - Klasky, Scott
AU - Samatova, Nagiza F.
PY - 2012
Y1 - 2012
N2 - I/O bottlenecks in HPC applications are becoming a more pressing problem as compute capabilities continue to outpace I/O capabilities. While double-precision simulation data often must be stored losslessly, the loss of some of the fractional component may introduce acceptably small errors to many types of scientific analyses. Given this observation, we develop a precision level of detail (APLOD) library, which partitions double-precision datasets along user-defined byte boundaries. APLOD parameterizes the analysis accuracy-I/O performance tradeoff, bounds maximum relative error, maintains I/O access patterns compared to full precision, and operates with low overhead. Using ADIOS as an I/O use-case, we show proportional reduction in disk access time to the degree of precision. Finally, we show the effects of partial precision analysis on accuracy for operations such as k-means and Fourier analysis, finding a strong applicability for the use of varying degrees of precision to reduce the cost of analyzing extreme-scale data.
AB - I/O bottlenecks in HPC applications are becoming a more pressing problem as compute capabilities continue to outpace I/O capabilities. While double-precision simulation data often must be stored losslessly, the loss of some of the fractional component may introduce acceptably small errors to many types of scientific analyses. Given this observation, we develop a precision level of detail (APLOD) library, which partitions double-precision datasets along user-defined byte boundaries. APLOD parameterizes the analysis accuracy-I/O performance tradeoff, bounds maximum relative error, maintains I/O access patterns compared to full precision, and operates with low overhead. Using ADIOS as an I/O use-case, we show proportional reduction in disk access time to the degree of precision. Finally, we show the effects of partial precision analysis on accuracy for operations such as k-means and Fourier analysis, finding a strong applicability for the use of varying degrees of precision to reduce the cost of analyzing extreme-scale data.
UR - http://www.scopus.com/inward/record.url?scp=84877707091&partnerID=8YFLogxK
U2 - 10.1109/SC.2012.26
DO - 10.1109/SC.2012.26
M3 - Conference contribution
AN - SCOPUS:84877707091
SN - 9781467308069
T3 - International Conference for High Performance Computing, Networking, Storage and Analysis, SC
BT - 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012
T2 - 2012 24th International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012
Y2 - 10 November 2012 through 16 November 2012
ER -