Abstract
Variations in High Performance Computing (HPC) system software configurations mean that applications are typically configured and built for specific HPC environments. Building applications can require a significant investment of time and effort for application users and requires application users to have additional technical knowledge. Linux container technologies such as Docker and Charliecloud bring great benefits to the application development, build and deployment processes. While cloud platforms already widely support containers, HPC systems still have non-uniform support of container technologies. In this work, we propose a unified runtime framework - Build and Execution Environment (BEE) across both HPC and cloud platforms that allows users to run their containerized HPC applications across all supported platforms without modification. We design four BEE backends for four different classes of HPC or cloud platform so that together they cover the majority of mainstream computing platforms for HPC users. Evaluations show that BEE provides an easy-to-use unified user interface, execution environment, and comparable performance.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 |
Editors | Naoki Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen Ahmed, Mu Qiao, Yang Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, Jeffrey Saltz |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1737-1746 |
Number of pages | 10 |
ISBN (Electronic) | 9781538650356 |
DOIs | |
State | Published - Jul 2 2018 |
Externally published | Yes |
Event | 2018 IEEE International Conference on Big Data, Big Data 2018 - Seattle, United States Duration: Dec 10 2018 → Dec 13 2018 |
Publication series
Name | Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 |
---|
Conference
Conference | 2018 IEEE International Conference on Big Data, Big Data 2018 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 12/10/18 → 12/13/18 |
Funding
This work was funded by the the US Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the US Department of Energy. This work was also supported by NSF Award No. 1513201. Results presented in this paper were obtained using the Chameleon Cloud sponsored by the National Science Foundation. The publication has been assigned the LANL identifier LA-UR-18-27912.
Keywords
- cloud computing
- container
- high performance computing