Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions

Peter N. Ciesielski, M. Brennan Pecha, Nicholas E. Thornburg, Meagan F. Crowley, Xi Gao, Oluwafemi Oyedeji, Hariswaran Sitaraman, Nicholas Brunhart-Lupo

Research output: Contribution to journalReview articlepeer-review

18 Scopus citations

Abstract

Between the molecular and reactor scales, which are familiar to the chemical engineering community, lies an intermediate regime, here termed the “mesoscale,” where transport phenomena and reaction kinetics compete on similar time scales. Bioenergy and catalytic processes offer particularly important examples of mesoscale phenomena owing to their multiphase nature and the complex, highly variable porosity characteristic of biomass and many structured catalysts. In this review, we overview applications and methods central to mesoscale modeling as they apply to reaction engineering of biomass conversion and catalytic processing. A brief historical perspective is offered to put recent advances in context. Applications of mesoscale modeling are described, and several specific examples from biomass pyrolysis and catalytic upgrading of bioderived intermediates are highlighted. Methods including reduced order modeling, finite element and finite volume approaches, geometry construction and import, and visualization of simulation results are described; in each category, recent advances, current limitations, and areas for future development are presented. Owing to improved access to high-performance computational resources, advances in algorithm development, and sustained interest in reaction engineering to sustainably meet societal needs, we conclude that a significant upsurge in mesoscale modeling capabilities is on the horizon that will accelerate design, deployment, and optimization of new bioenergy and catalytic technologies.

Original languageEnglish
Pages (from-to)14382-14400
Number of pages19
JournalEnergy and Fuels
Volume35
Issue number18
DOIs
StatePublished - Sep 16 2021

Funding

We gratefully acknowledge Dr. Lintao Bu for helpful discussions and for providing a molecular model of lignocellulose for visualization in Figure 1. This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by the Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technology Office under Contract No. DE-AC36-08GO28308 with the Alliance for Sustainable Energy, LLC.

Fingerprint

Dive into the research topics of 'Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions'. Together they form a unique fingerprint.

Cite this