Bounded matrix low rank approximation

Ramakrishnan Kannan, Mariya Ishteva, Haesun Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Matrix lower rank approximations such as nonnegative matrix factorization (NMF) have been successfully used to solve many data mining tasks. In this paper, we propose a new matrix lower rank approximation called Bounded Matrix Low Rank Approximation (BMA) which imposes a lower and an upper bound on every element of a lower rank matrix that best approximates a given matrix with missing elements. This new approximation models many real world problems, such as recommender systems, and performs better than other methods, such as singular value decompositions (SVD) or NMF. We present an efficient algorithm to solve BMA based on coordinate descent method. BMA is different from NMF as it imposes bounds on the approximation itself rather than on each of the low rank factors. We show that our algorithm is scalable for large matrices with missing elements on multi core systems with low memory. We present substantial experimental results illustrating that the proposed method outperforms the state of the art algorithms for recommender systems such as Stochastic Gradient Descent, Alternating Least Squares with regularization, SVD++, Bias-SVD on real world data sets such as Jester, Movielens, Book crossing, Online dating and Netflix.

Original languageEnglish
Title of host publicationProceedings - 12th IEEE International Conference on Data Mining, ICDM 2012
Pages319-328
Number of pages10
DOIs
StatePublished - 2012
Externally publishedYes
Event12th IEEE International Conference on Data Mining, ICDM 2012 - Brussels, Belgium
Duration: Dec 10 2012Dec 13 2012

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786

Conference

Conference12th IEEE International Conference on Data Mining, ICDM 2012
Country/TerritoryBelgium
CityBrussels
Period12/10/1212/13/12

Keywords

  • Block
  • Block coordinate descent method
  • Bound constraints
  • Low rank approximation
  • Matrix factorization
  • Recommender systems
  • Scalable algorithm

Fingerprint

Dive into the research topics of 'Bounded matrix low rank approximation'. Together they form a unique fingerprint.

Cite this