Abstract
We extend the positivity-preserving method of Zhang and Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care is taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f∈. [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
Original language | English |
---|---|
Pages (from-to) | 151-183 |
Number of pages | 33 |
Journal | Journal of Computational Physics |
Volume | 287 |
DOIs | |
State | Published - Apr 5 2015 |
Funding
This research is sponsored, in part, by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. De-AC05-00OR22725 . It used resources of the Oak Ridge Leadership Computing Facility at ORNL provided through the INCITE program and a Director's Discretionary allocation. The research of the second author is supported in part by NSF under Grant No. 1217170 . The research of the third author is supported in part by NSF grant DMS-1216454 .
Keywords
- Boltzmann equation
- Discontinuous Galerkin
- High order accuracy
- Hyperbolic conservation laws
- Maximum principle
- Radiation transport