Abstract
Face recognition involves at least three major concepts from statistics: dimension reduction, feature extraction, and prediction. A selective review of algorithms, from seminal to state-of-the-art, explores how these concepts persist as organizing principles in the field. Algorithms based directly upon classical statistical techniques include linear methods like principal component analysis and linear discriminant analysis. Nonlinear manifold methods, such as Laplacianfaces and Stiefel quotients, offer considerable performance improvements. Other noteworthy ideas include three-dimensional morphable models, methods using local regions and/or alternative feature spaces (e.g., elastic bunch graph matching and local binary patterns) and sparse representation approaches. Opportunities for innovative statistical and collaborative research in face recognition are expanding in tandem with the growing complexity and diversity of applications.
Original language | English |
---|---|
Pages (from-to) | 288-308 |
Number of pages | 21 |
Journal | Wiley Interdisciplinary Reviews: Computational Statistics |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - Jul 2013 |
Keywords
- Biometrics
- Computer vision
- Face recognition
- Image processing