Abstract
Ionic liquid (IL) pretreatment methods show incredible promise for the efficient conversion of lignocellulosic feedstocks to fuels and chemicals. Given their low vapor pressures, distillation-based methods of extracting ionic liquids out of biomass post-pretreatment have historically been ignored in favor of alternative methods. We demonstrate a process to distill four acetate-based ionic liquids ([EthA][OAc], [PropA][OAc], [MAEthA][OAc], and [DMAEthA][OAc]) at low pressure and high purity that overcome some disadvantages of “water washing” and “one pot” recovery methods. Out of four tested ILs, ethanolamine acetate ([EthA][OAc]) is shown to have the most agreeable conversion metrics for commercial bioconversion processes achieving 73.6 % and 51.4 % of theoretical glucose and xylose yields respectively and >85 % recovery rates. Our process metrics are factored into a techno-economic analysis where [EthA][OAc] distillation is compared to other recovery methods as well as ethanolamine pretreatment at both milliliter and liter scales. Although our TEA shows [EthA][OAc] distillation underperforming against other processes, we show a step-by-step avenue to reduce sugar production cost below the wholesale dextrose price at scale.
Original language | English |
---|---|
Article number | 147824 |
Journal | Chemical Engineering Journal |
Volume | 479 |
DOIs | |
State | Published - Jan 1 2024 |
Externally published | Yes |
Funding
This work was part of the DOE Joint BioEnergy Institute (https://www.jbei.org) supported by the U. S. Department of Energy , Office of Science , Office of Biological and Environmental Research , through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy . The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was part of the DOE Joint BioEnergy Institute (https://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Funders | Funder number |
---|---|
United States Government | |
U.S. Department of Energy | |
Office of Science | |
Biological and Environmental Research | DE-AC02-05CH11231 |
Lawrence Berkeley National Laboratory |
Keywords
- Biomass deconstruction
- Cellulose
- Distillation
- Lignin
- Protic ionic liquids
- Sustainability