Abstract
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.
Original language | English |
---|---|
Article number | 36212 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
State | Published - Oct 31 2016 |
Funding
This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. The research on the printing was supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship program. Access to the MDF facilities and use of additive instrument time and labor are supported by the MDF Tech Collaborations between ORNL and Magnet Applications Inc. The authors appreciate the assistance of Dr. Shannon Mahurin (ORNL) for coating the SEM samples, Mr. John M. Lindahl (ORNL) with CAD drawing, Mr. Benjamin A. Begley (ORNL) with flux loss measurements and Mr. Andres E. Marquez-Rossy (ORNL) for obtaining pictures of the tensile specimens after the tests.
Funders | Funder number |
---|---|
Critical Materials Institute | |
Magnet Applications Inc. | |
Office of Workforce Development for Teachers | |
U.S. Department of Energy | |
Myotonic Dystrophy Foundation | |
Advanced Manufacturing Office | |
Office of Science | |
Office of Energy Efficiency and Renewable Energy | |
Oak Ridge National Laboratory |