TY - GEN
T1 - Best practices for full-scale testing and energy savings, daylighting and visual comfort evaluation of dynamic shading
AU - Kunwar, Niraj
AU - Cetin, Kristen S.
AU - Passe, Ulrike
N1 - Publisher Copyright:
© 2019 ASHRAE.
PY - 2019
Y1 - 2019
N2 - Fenestrations alone are responsible for 2.15 Quads 733 (IWh) of heating energy consumption and 1.48 Quads 434 (TWh) of cooling energy consumption in U.S. buildings. Fenestrations also impact daylighting and occupant comfort; ideally, they should help provide sufficient daylighting while minimizing energy use while not negatively affecting occupant comfort. Dynamic shading is an excellent means for optimally balancing these needs given the dynamic nature of weather variables effecting the built environment. However, most dynamic shading studies are conducted using modeling only and most focus on the south orientation. As such, three different types of motorized shading devices: two roller shades and one Venetian blind were tested in a full-scale commercial office building laboratory in three different orientations: east, west and south. Testing included the use of two identical parallel rooms in each of orientation from March to September 2017. One test room in each orientation was measured as the baseline with no shading device and no lighting control, while the other utilized dynamic shading and electric lights, controlled based on feedback from an exterior irradiation sensor and an interior illuminance sensor. Two different control strategies were used for each type of shading devices. Cooling and lighting energy consumption for each of the test rooms were measured and used to calculate energy savings potential of the dynamic shading application. Daylightingperformance was also evaluated using three different interior illuminance sensors placed at different distance from the window and visual comfort was assessed based on measured vertical illuminance. This study will include a broad overview of the dynamic shading testing methods used, challenges and problems encountered with the full-scale implementation of these devices, and lessons learned and best practices for others seeking to utilize these devices in full-scale or real-world environments.
AB - Fenestrations alone are responsible for 2.15 Quads 733 (IWh) of heating energy consumption and 1.48 Quads 434 (TWh) of cooling energy consumption in U.S. buildings. Fenestrations also impact daylighting and occupant comfort; ideally, they should help provide sufficient daylighting while minimizing energy use while not negatively affecting occupant comfort. Dynamic shading is an excellent means for optimally balancing these needs given the dynamic nature of weather variables effecting the built environment. However, most dynamic shading studies are conducted using modeling only and most focus on the south orientation. As such, three different types of motorized shading devices: two roller shades and one Venetian blind were tested in a full-scale commercial office building laboratory in three different orientations: east, west and south. Testing included the use of two identical parallel rooms in each of orientation from March to September 2017. One test room in each orientation was measured as the baseline with no shading device and no lighting control, while the other utilized dynamic shading and electric lights, controlled based on feedback from an exterior irradiation sensor and an interior illuminance sensor. Two different control strategies were used for each type of shading devices. Cooling and lighting energy consumption for each of the test rooms were measured and used to calculate energy savings potential of the dynamic shading application. Daylightingperformance was also evaluated using three different interior illuminance sensors placed at different distance from the window and visual comfort was assessed based on measured vertical illuminance. This study will include a broad overview of the dynamic shading testing methods used, challenges and problems encountered with the full-scale implementation of these devices, and lessons learned and best practices for others seeking to utilize these devices in full-scale or real-world environments.
UR - http://www.scopus.com/inward/record.url?scp=85095431782&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85095431782
T3 - ASHRAE Transactions
SP - 423
EP - 430
BT - ASHRAE Transactions - 2019 ASHRAE Annual Conference
PB - ASHRAE
T2 - 2019 ASHRAE Annual Conference
Y2 - 22 June 2019 through 26 June 2019
ER -