TY - JOUR
T1 - Beam-ion confinement for different injection geometries
AU - Heidbrink, W. W.
AU - Murakami, M.
AU - Park, J. M.
AU - Petty, C. C.
AU - Van Zeeland, M. A.
AU - Yu, J. H.
AU - McKee, G. R.
PY - 2009
Y1 - 2009
N2 - The DIII-D tokamak is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be moved up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular and on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer losses than counter, tangential fewer than perpendicular and on-axis fewer than off-axis; the differences are greater at low current than at higher current. The helicity of the magnetic field has a weak effect on the overall confinement. Fast-ion Dα (FIDA) and neutron measurements diagnose the confinement at higher power. The basic trends are the same as in low-power plasmas but, even in plasmas without long wavelength Alfvén modes or other MHD, discrepancies with theory are observed, especially in higher temperature plasmas. At modest temperature, two-dimensional images of the FIDA light are in good agreement with the simulations for both on-axis and off-axis injection. Discrepancies with theory are more pronounced at low fast-ion energy and at high plasma temperature, suggesting that fast-ion transport by microturbulence is responsible for the anomalies.
AB - The DIII-D tokamak is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be moved up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular and on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer losses than counter, tangential fewer than perpendicular and on-axis fewer than off-axis; the differences are greater at low current than at higher current. The helicity of the magnetic field has a weak effect on the overall confinement. Fast-ion Dα (FIDA) and neutron measurements diagnose the confinement at higher power. The basic trends are the same as in low-power plasmas but, even in plasmas without long wavelength Alfvén modes or other MHD, discrepancies with theory are observed, especially in higher temperature plasmas. At modest temperature, two-dimensional images of the FIDA light are in good agreement with the simulations for both on-axis and off-axis injection. Discrepancies with theory are more pronounced at low fast-ion energy and at high plasma temperature, suggesting that fast-ion transport by microturbulence is responsible for the anomalies.
UR - http://www.scopus.com/inward/record.url?scp=70450227372&partnerID=8YFLogxK
U2 - 10.1088/0741-3335/51/12/125001
DO - 10.1088/0741-3335/51/12/125001
M3 - Article
AN - SCOPUS:70450227372
SN - 0741-3335
VL - 51
JO - Plasma Physics and Controlled Fusion
JF - Plasma Physics and Controlled Fusion
IS - 12
M1 - 125001
ER -