Axially Resolved Performance of Cu-Zeolite SCR Catalysts

Cary Henry, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets, Mario Castagnola, Hai Ying Chen

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this work, an alternative method is proposed and validated for quantifying the axial performance of a state-of-the-art Cu zeolite SCR catalyst. Catalyst cores of a standard length, with varying lengths of wash-coated regions were used to axially resolve the functional performance of the SCR catalyst. This proposed method was validated by quantifying the catalyst entrance and exit effects, as well as the effect of non-uniform wash-coat loading densities. This method is less susceptible to some of the complications highlighted in the previous studies, such as flow uniformity between channels, as well as radiative heating effects, since the product gases are sampled across the entire monolith cross-section rather than through a single catalyst channel. The specific catalyst functions quantified include: NO and NH₃ oxidation, NH₃ storage capacity, as well as NOx conversion efficiency. The NOx conversion performance of the catalyst was evaluated for both the standard (NO₂/NOx=0) and fast (NO₂/NOx=0.5) SCR reactions as a function of both axial length and catalyst operating temperature.

Original languageEnglish
Pages (from-to)975-984
Number of pages10
JournalSAE International Journal of Engines
Volume5
Issue number3
DOIs
StatePublished - Apr 16 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Axially Resolved Performance of Cu-Zeolite SCR Catalysts'. Together they form a unique fingerprint.

Cite this