TY - JOUR
T1 - Availability of Critical Benchmark Experiments for the Pebble Tanker Transportation Model for Nuclear Criticality Safety Validation of TRISO Pebbles
AU - Karriem, Veronica V.
AU - Marshall, William J.
N1 - Publisher Copyright:
© This material is published by permission of the Oak Ridge National Laboratory managed by UT-Battelle LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
PY - 2024
Y1 - 2024
N2 - This study addresses the need for comprehensive investigations into TRi-structural ISOtropic (TRISO) fuel pebble transportation validation. In this work, an exploratory model, the pebble tanker(PT), was developed with the aim of facilitating the validation of nuclear criticality safety calculations in the context of industrial-scale transportation of TRISO fuel. The PT model was designed to investigate the availability and applicability of critical benchmark experiments crucial for assessing the transportation of these pebbles. This work incorporated sensitivity/uncertainty (S/U) similarity studies to quantify the applicability of critical benchmark experiments and to address nuclear data uncertainties in the context of TRISO transportation. Two container models were investigated: one for the Hermes-type pebble and one for the Pebble Bed Modular Reactor (PBMR)–type pebble. The models were simplified, considering fuel, containment, and either water or air, to enable a focus on the underlying physics of applications involving TRISO fuel pebbles using the PT model. A crucial aspect under consideration was the capacity of the transport package to hold pebbles while ensuring subcriticality in the flooded state. An approach in the criticality validation process involves assessing the similarity between systems through an integral index parameter evaluation. This involves calculating a correlation coefficient (referred to as ck) based on shared nuclear data–induced uncertainty between a benchmark experiment and the application of the PT model. To facilitate this analysis, the SCALE tools, particularly the CSAS6-Shift, TSUNAMI-3D-Shift, and TSUNAMI-IP sequences, were employed for comprehensive studies in neutronics and S/U analysis. Our findings showed that there are sufficient critical experimental benchmarks to perform this validation of the PT model in the most reactive state, i.e. when the tanker is flooded. This paper provides valuable insights into validating a transport package for Generation IV TRISO fuel pebbles.
AB - This study addresses the need for comprehensive investigations into TRi-structural ISOtropic (TRISO) fuel pebble transportation validation. In this work, an exploratory model, the pebble tanker(PT), was developed with the aim of facilitating the validation of nuclear criticality safety calculations in the context of industrial-scale transportation of TRISO fuel. The PT model was designed to investigate the availability and applicability of critical benchmark experiments crucial for assessing the transportation of these pebbles. This work incorporated sensitivity/uncertainty (S/U) similarity studies to quantify the applicability of critical benchmark experiments and to address nuclear data uncertainties in the context of TRISO transportation. Two container models were investigated: one for the Hermes-type pebble and one for the Pebble Bed Modular Reactor (PBMR)–type pebble. The models were simplified, considering fuel, containment, and either water or air, to enable a focus on the underlying physics of applications involving TRISO fuel pebbles using the PT model. A crucial aspect under consideration was the capacity of the transport package to hold pebbles while ensuring subcriticality in the flooded state. An approach in the criticality validation process involves assessing the similarity between systems through an integral index parameter evaluation. This involves calculating a correlation coefficient (referred to as ck) based on shared nuclear data–induced uncertainty between a benchmark experiment and the application of the PT model. To facilitate this analysis, the SCALE tools, particularly the CSAS6-Shift, TSUNAMI-3D-Shift, and TSUNAMI-IP sequences, were employed for comprehensive studies in neutronics and S/U analysis. Our findings showed that there are sufficient critical experimental benchmarks to perform this validation of the PT model in the most reactive state, i.e. when the tanker is flooded. This paper provides valuable insights into validating a transport package for Generation IV TRISO fuel pebbles.
KW - covariance
KW - Nuclear criticality safety
KW - sensitivity/uncertainty
KW - TRISO
KW - TSUNAMI-3D
UR - http://www.scopus.com/inward/record.url?scp=85212468226&partnerID=8YFLogxK
U2 - 10.1080/00295450.2024.2421676
DO - 10.1080/00295450.2024.2421676
M3 - Article
AN - SCOPUS:85212468226
SN - 0029-5450
JO - Nuclear Technology
JF - Nuclear Technology
ER -