Automating Genetic Algorithm Mutations for Molecules Using a Masked Language Model

Andrew E. Blanchard, Mayanka Chandra Shekar, Shang Gao, John Gounley, Isaac Lyngaas, Jens Glaser, Debsindhu Bhowmik

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Inspired by the evolution of biological systems, genetic algorithms have been applied to generate solutions for optimization problems in a variety of scientific and engineering disciplines. For a given problem, a suitable genome representation must be defined along with a mutation operator to generate subsequent generations. Unlike natural systems, which display a variety of complex rearrangements (e.g., mobile genetic elements), mutation for genetic algorithms commonly utilizes only random pointwise changes. Furthermore, generalizing beyond pointwise mutations poses a key difficulty as useful genome rearrangements depend on the representation and problem domain. To move beyond the limitations of manually defined pointwise changes, here we propose the use of techniques from masked language models to automatically generate mutations. As a first step, common subsequences within a given population are used to generate a vocabulary. The vocabulary is then used to tokenize each genome. A masked language model is trained on the tokenized data in order to generate possible rearrangements (i.e., mutations). In order to illustrate the proposed strategy, we use string representations of molecules and use a genetic algorithm to optimize for drug-likeness and synthesizability. Our results show that moving beyond random pointwise mutations accelerates genetic algorithm optimization.

Original languageEnglish
Pages (from-to)793-799
Number of pages7
JournalIEEE Transactions on Evolutionary Computation
Volume26
Issue number4
DOIs
StatePublished - Aug 1 2022

Keywords

  • Artificial intelligence
  • bioinformatics
  • genetic algorithms
  • machine learning

Fingerprint

Dive into the research topics of 'Automating Genetic Algorithm Mutations for Molecules Using a Masked Language Model'. Together they form a unique fingerprint.

Cite this