TY - JOUR
T1 - Automated diagnosis of retinopathy by content-based image retrieval
AU - Chaum, Edward
AU - Karnowski, Thomas P.
AU - Govindasamy, V. Priya
AU - Abdelrahman, Mohamed
AU - Tobin, Kenneth W.
PY - 2008/11
Y1 - 2008/11
N2 - PURPOSE: To describe a novel computer-based image analysis method that is being developed to assist and automate the diagnosis of retinal disease. METHODS: Content-based image retrieval is the process of retrieving related images from large database collections using their pictorial content. The content feature list becomes the index for storage, search, and retrieval of related images from a library based upon specific visual characteristics. Low-level analyses use feature description models and higher-level analyses use perceptual organization and spatial relationships, including clinical metadata, to extract semantic information. RESULTS: We defined, extracted, and tested a large number of region- and lesion-based features from a dataset of 395 retinal images. Using a statistical hold-one-out method, independent queries for each image were submitted to the system and a diagnostic prediction was formulated. The diagnostic sensitivity for all stratified levels of age-related macular degeneration ranged from 75% to 100%. Similarly, the sensitivity of detection and accuracy for proliferative diabetic retinopathy ranged from 75% to 91.7% and for nonproliferative diabetic retinopathy, ranged from 75% to 94.7%. The overall purity of the diagnosis (specificity) for all disease states in the dataset was 91.3%. CONCLUSIONS: The probabilistic nature of content-based image retrieval permits us to make statistically relevant predictions regarding the presence, severity, and manifestations of common retinal diseases from digital images in an automated and deterministic manner.
AB - PURPOSE: To describe a novel computer-based image analysis method that is being developed to assist and automate the diagnosis of retinal disease. METHODS: Content-based image retrieval is the process of retrieving related images from large database collections using their pictorial content. The content feature list becomes the index for storage, search, and retrieval of related images from a library based upon specific visual characteristics. Low-level analyses use feature description models and higher-level analyses use perceptual organization and spatial relationships, including clinical metadata, to extract semantic information. RESULTS: We defined, extracted, and tested a large number of region- and lesion-based features from a dataset of 395 retinal images. Using a statistical hold-one-out method, independent queries for each image were submitted to the system and a diagnostic prediction was formulated. The diagnostic sensitivity for all stratified levels of age-related macular degeneration ranged from 75% to 100%. Similarly, the sensitivity of detection and accuracy for proliferative diabetic retinopathy ranged from 75% to 91.7% and for nonproliferative diabetic retinopathy, ranged from 75% to 94.7%. The overall purity of the diagnosis (specificity) for all disease states in the dataset was 91.3%. CONCLUSIONS: The probabilistic nature of content-based image retrieval permits us to make statistically relevant predictions regarding the presence, severity, and manifestations of common retinal diseases from digital images in an automated and deterministic manner.
UR - http://www.scopus.com/inward/record.url?scp=58949091123&partnerID=8YFLogxK
U2 - 10.1097/IAE.0b013e31818356dd
DO - 10.1097/IAE.0b013e31818356dd
M3 - Article
C2 - 18997609
AN - SCOPUS:58949091123
SN - 0275-004X
VL - 28
SP - 1463
EP - 1477
JO - Retina
JF - Retina
IS - 10
ER -