Attacking the opioid epidemic: Determining the epistatic and pleiotropic genetic architectures for chronic pain and opioid addiction

Wayne Joubert, Deborah Weighill, David Kainer, Sharlee Climer, Amy Justice, Kjiersten Fagnan, Daniel Jacobson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

43 Scopus citations

Abstract

We describe the CoMet application for large-scale epistatic Genome-Wide Association Studies (eGWAS) and pleiotropy studies. High performance is attained by transforming the underlying vector comparison methods into highly performant generalized distributed dense linear algebra operations. The 2-way and 3-way Proportional Similarity metric and Custom Correlation Coefficient are implemented using native or adapted GEMM kernels optimized for GPU architectures. By aggressive overlapping of communications, transfers and computations, high efficiency with respect to single GPU kernel performance is maintained up to the full Titan and Summit systems. Nearly 300 quadrillion element comparisons per second and over 2.3 mixed precision ExaOps are reached on Summit by use of Tensor Core hardware on the Nvidia Volta GPUs. Performance is four to five orders of magnitude beyond comparable state of the art. CoMet is currently being used in projects ranging from bioenergy to clinical genomics, including for the genetics of chronic pain and opioid addiction.

Original languageEnglish
Title of host publicationProceedings - International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages717-730
Number of pages14
ISBN (Electronic)9781538683842
DOIs
StatePublished - Jul 2 2018
Event2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018 - Dallas, United States
Duration: Nov 11 2018Nov 16 2018

Publication series

NameProceedings - International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018

Conference

Conference2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
Country/TerritoryUnited States
CityDallas
Period11/11/1811/16/18

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Attacking the opioid epidemic: Determining the epistatic and pleiotropic genetic architectures for chronic pain and opioid addiction'. Together they form a unique fingerprint.

Cite this