Abstract
The idea of atomic-resolution holography has its roots in the X-ray work of Bragg and in Gabor's electron interference microscope. Gabor's lensless microscope was not realized in his time, but over the past twelve years there has been a steady increase in the number of reports on atomic-resolution holography. All of this work involves the use of electrons or hard X-rays to produce the hologram. Neutrons are often unique among scattering probes in their interaction with materials: for example, the relative visibility of hydrogen and its isotopes is a great advantage in the study of polymers and biologically relevant materials. Recent work proposed that atomic-resolution holography could be achieved with thermal neutrons. Here we use monochromatic thermal neutrons, adopting the inside-source concept of Szöke, to image planes of oxygen atoms located above and below a single hydrogen atom in the oxide mineral simpsonite.
Original language | English |
---|---|
Pages (from-to) | 525-527 |
Number of pages | 3 |
Journal | Nature |
Volume | 414 |
Issue number | 6863 |
DOIs | |
State | Published - Nov 29 2001 |
Externally published | Yes |