Assessment of the 2D/1D implementation in mpact

Benjamin Collins, Shane Stimpson, Andrew Godfrey, Brendan Kochunas, Thomas Downar

Research output: Contribution to conferencePaperpeer-review

11 Scopus citations

Abstract

The 2D/1D method is used in the MPACT code to obtain 3D solutions of the Boltzmann transport equation for practical reactor geometries. The OECD C5G7 transport benchmark problem is used first to assess the accuracy of the method with a fixed set of cross-sections. The VERA Core Physics Progression Problems are then used to compare the accuracy of the transport solver using a 56-group library based on ENDFB-VII.0. Single assembly PWR designs are simulated, and the eigenvalue and pin powers are compared to continuous-energy Monte Carlo results. A 3×3 assembly cluster with a control rod inserted into the center assembly is then compared to Monte Carlo to assess the ability of MPACT to predict a control rod worth curve. Finally, MPACT is used to simulate the initial critical states of a full 3D initial core of a PWR at zero power conditions.

Original languageEnglish
StatePublished - 2014
Event2014 International Conference on Physics of Reactors, PHYSOR 2014 - Kyoto, Japan
Duration: Sep 28 2014Oct 3 2014

Conference

Conference2014 International Conference on Physics of Reactors, PHYSOR 2014
Country/TerritoryJapan
CityKyoto
Period09/28/1410/3/14

Keywords

  • 2D/1D
  • CASL
  • MPACT

Fingerprint

Dive into the research topics of 'Assessment of the 2D/1D implementation in mpact'. Together they form a unique fingerprint.

Cite this