Assessment of sensor technologies for advanced reactors

Kofi Korsah, R. A. Kisner, C. L. Britton, Pradeep Ramuhalli, D. W. Wootan, N. C. Anheier, A. A. Diaz, E. H. Hirt, Richard B. Vilim, H. T. Chien, S. Bakhtiari, S. Sheen, S. Gopalsami, A. Heifetz, S. W. Tam, Y. Park, Belle R. Upadhyaya, Austin Stanford

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy's (DOE's) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope for fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.

Original languageEnglish
Title of host publication10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017
PublisherAmerican Nuclear Society
Pages1115-1124
Number of pages10
ISBN (Electronic)9781510851160
StatePublished - 2017
Event10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017 - San Francisco, United States
Duration: Jun 11 2017Jun 15 2017

Publication series

Name10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017
Volume2

Conference

Conference10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017
Country/TerritoryUnited States
CitySan Francisco
Period06/11/1706/15/17

Funding

This project was funded by the US Department of Energy's Office of Nuclear Energy under the Instrumentation, Control, and Human-Machine Interface (ICHMI) technical area of the advanced Reactor Technologies (ART) program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
ICHMI
US Department of Energy
US Department of Energy's Office of Nuclear Energy
U.S. Department of Energy
Interface
Office of Nuclear Energy
Nuclear Reactor Technologies
Astrobiology Research Trust

    Fingerprint

    Dive into the research topics of 'Assessment of sensor technologies for advanced reactors'. Together they form a unique fingerprint.

    Cite this