Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

S. W. Glass, P. Ramuhalli, L. S. Fifield, M. S. Prowant, G. Dib, J. R. Tedeschi, J. D. Suter, A. M. Jones, M. S. Good, A. F. Pardini, T. S. Hartman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. Technologies include both bulk electrical measurements (Tan δ, time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including Tan δ, FDR, and ultrasound methods that have been reviewed most completely in this progress period.

Original languageEnglish
Title of host publication42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
Subtitle of host publicationIncorporating the 6th European-American Workshop on Reliability of NDE
EditorsLeonard J. Bond, Dale E. Chimenti
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413535
DOIs
StatePublished - Feb 10 2016
Externally publishedYes
Event42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2015, Incorporating the 6th European-American Workshop on Reliability of NDE - Minneapolis, United States
Duration: Jul 26 2015Jul 31 2015

Publication series

NameAIP Conference Proceedings
Volume1706
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2015, Incorporating the 6th European-American Workshop on Reliability of NDE
Country/TerritoryUnited States
CityMinneapolis
Period07/26/1507/31/15

Fingerprint

Dive into the research topics of 'Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status'. Together they form a unique fingerprint.

Cite this