TY - GEN
T1 - Assessment and verification of a novel method for near surface measurement of mechanical properties
AU - Ozcan, S.
AU - Farhang, K.
AU - Filip, P.
PY - 2006
Y1 - 2006
N2 - A novel two-parameter area function for determination of near surface properties of Young's modulus of elasticity and hardness has shown promise for compensating for the imperfection of the tip-end in an instrumented indentation measurement. This paper provides a comprehensive study involving a Berkovitch tip. The tip is utilized in an MTS nanoindentation measurement machine and used to establish load indentation information for fused silica samples. The geometry of the tip is then characterized independently using a highly accurate Atomic Force Microscope. Using the indentation data along with the two-parameter area function methodology, the tip-end radius of curvature is found to provide the most consistent value of modulus of elasticity. Independently, the data from the SEM measurement of the same tip is used to obtain the least squares estimation of the tip curvature. The two approaches yield favorable agreement in the estimation of tip-end radius of curvature. Therefore, the validity of the two-parameter area function method is proved. The method is shown to provide a robust, reliable and accurate measurement of modulus of elasticity and hardness in the nanoscale proximity of a surface.
AB - A novel two-parameter area function for determination of near surface properties of Young's modulus of elasticity and hardness has shown promise for compensating for the imperfection of the tip-end in an instrumented indentation measurement. This paper provides a comprehensive study involving a Berkovitch tip. The tip is utilized in an MTS nanoindentation measurement machine and used to establish load indentation information for fused silica samples. The geometry of the tip is then characterized independently using a highly accurate Atomic Force Microscope. Using the indentation data along with the two-parameter area function methodology, the tip-end radius of curvature is found to provide the most consistent value of modulus of elasticity. Independently, the data from the SEM measurement of the same tip is used to obtain the least squares estimation of the tip curvature. The two approaches yield favorable agreement in the estimation of tip-end radius of curvature. Therefore, the validity of the two-parameter area function method is proved. The method is shown to provide a robust, reliable and accurate measurement of modulus of elasticity and hardness in the nanoscale proximity of a surface.
UR - http://www.scopus.com/inward/record.url?scp=33751291787&partnerID=8YFLogxK
U2 - 10.1115/ijtc2006-12242
DO - 10.1115/ijtc2006-12242
M3 - Conference contribution
AN - SCOPUS:33751291787
SN - 0791837890
SN - 9780791837894
T3 - Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006
BT - Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006
PB - American Society of Mechanical Engineers
T2 - STLE/ASME International Joint Tribology Conference, IJTC 2006
Y2 - 23 October 2006 through 25 October 2006
ER -