Abstract
We demonstrate the fabrication of three-dimensional freestanding foams of hybrid graphene-single-walled carbon nanotube nanomanufactured materials with reversible capacities of 2640 mA h g-1 at 0.186 A g-1 and 236 mA h g-1 at 27.9 A g-1. The Li storage behavior of this material is compared against other nanostructures in similar flexible foam platforms including graphene, ultra-thin graphite, and single-walled carbon nanotubes (SWNTs), and we elucidate the improved hybrid material performance due to the decoupling of lithium storage reaction energetics dictated by the SWNTs from the total storage capacity of the hybrid material. This work demonstrates a route to develop mechanically robust all-carbon electrodes with the potential for reversible Li-ion storage capacity approaching silicon, power capability of the best supercapacitors, and based on a material simultaneously usable as a charge collector and anode.
Original language | English |
---|---|
Pages (from-to) | 4669-4675 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 6 |
Issue number | 9 |
DOIs | |
State | Published - May 7 2014 |
Externally published | Yes |