Assessing parallel path cooling tower performance via artificial neural networks

Christopher Katinas, Brian d'Entremont, William Ray, Michael Willis, Thomas Reichardt

Research output: Contribution to journalArticlepeer-review

Abstract

Real-time monitoring of a research nuclear reactor, a system in which all generated power is dissipated to the environment, can be performed via analysis of the heat rejection from the cooling system. Given an inlet water temperature and flow rate, the reactor power can be well-approximated from the outlet water temperature; however, the instrumentation to measure outlet conditions may not be robust or accurate. If we know how a cooling tower performs from historical data, but cannot measure the outlet temperature, a mathematical representation of the system can be inverted to obtain the outlet water temperature that describes the cooling capacity. Unfortunately, model inversion processes are computationally expensive. To address this, an artificial neural network (ANN) is implemented to assess the performance of a multi-cell cooling tower for a nuclear reactor. This approach leverages the Merkel model to obtain an extensive data set describing performance of the cooling tower cells throughout a wide array of potential operating conditions. The Merkel model is expressed as a function of four parameters: the inlet and outlet water temperatures, inlet air wet bulb temperature, and ratio of liquid-to-gas mass flow rates (L/G), which together provide a non-dimensional number indicative of cooling tower performance, called the Merkel integral. Computing a 4-dimensional data structure that describes finite combinations of the Merkel integral, an inverse model is then generated using an ANN to determine the cell outlet water temperature from the other three model parameters along with the computed Merkel integral. Compared to traditional model inversion methods, the ANN reduces the computational time by approximately 4 orders of magnitude, with effectively no sacrifice to solution accuracy, and could be applied for different cooling towers in the event the performance curve is known. Three use cases of the ANN are then reviewed: (1) determining the cell outlet water temperatures when gas flow at rated conditions (GFRC) is known, (2) performing the prior case without knowledge of the GRFC, and (3) assessing performance differences between the individual tower cells.

Original languageEnglish
Article number109993
JournalAnnals of Nuclear Energy
Volume192
DOIs
StatePublished - Nov 2023

Funding

The work presented herein was supported by Defense Nuclear Nonproliferation Research and Development. This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.” The work presented herein was supported by Defense Nuclear Nonproliferation Research and Development. This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.”

FundersFunder number
Defense Nuclear Nonproliferation Research and Development
United States Government
U.S. Department of Energy

    Fingerprint

    Dive into the research topics of 'Assessing parallel path cooling tower performance via artificial neural networks'. Together they form a unique fingerprint.

    Cite this