Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective

Kareem S. Aggour, Vipul K. Gupta, Daniel Ruscitto, Leonardo Ajdelsztajn, Xiao Bian, Kristen H. Brosnan, Natarajan Chennimalai Kumar, Voramon Dheeradhada, Timothy Hanlon, Naresh Iyer, Jaydeep Karandikar, Peng Li, Abha Moitra, Johan Reimann, Dean M. Robinson, Alberto Santamaria-Pang, Chen Shen, Monica A. Soare, Changjie Sun, Akane SuzukiRaju Venkataramana, Joseph Vinciquerra

Research output: Contribution to journalReview articlepeer-review

59 Scopus citations

Abstract

At GE Research, we are combining physics with artificial intelligence and machine learning to advance manufacturing design, processing, and inspection, turning innovative technologies into real products and solutions across our industrial portfolio. This article provides a snapshot of how this physical plus digital transformation is evolving at GE.

Original languageEnglish
Pages (from-to)545-558
Number of pages14
JournalMRS Bulletin
Volume44
Issue number7
DOIs
StatePublished - Jul 1 2019
Externally publishedYes

Keywords

  • Coating
  • Composite
  • Metal
  • Optical metallography
  • Powder metallurgy

Fingerprint

Dive into the research topics of 'Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective'. Together they form a unique fingerprint.

Cite this