Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides

Xi Chen, Steven N. Girard, Fei Meng, Edgar Lara-Curzio, Song Jin, John B. Goodenough, Jianshi Zhou, Li Shi

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1-xSi1.8is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75inclusions with 50-200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1-xSi1.8results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1-xSi1.8can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

Original languageEnglish
Article number1400452
JournalAdvanced Energy Materials
Volume4
Issue number14
DOIs
StatePublished - Oct 1 2014

Keywords

  • Alloys
  • Nanostructures
  • Silicides
  • Thermal conductivity
  • Thermoelectric materials

Fingerprint

Dive into the research topics of 'Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides'. Together they form a unique fingerprint.

Cite this