Antisymmetric linear magnetoresistance and the planar Hall effect

Yishu Wang, Patrick A. Lee, D. M. Silevitch, F. Gomez, S. E. Cooper, Y. Ren, J. Q. Yan, D. Mandrus, T. F. Rosenbaum, Yejun Feng

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The phenomena of antisymmetric magnetoresistance and the planar Hall effect are deeply entwined with ferromagnetism. The intrinsic magnetization of the ordered state permits these unusual and rarely observed manifestations of Onsager’s theorem when time reversal symmetry is broken at zero applied field. Here we study two classes of ferromagnetic materials, rare-earth magnets with high intrinsic coercivity and antiferromagnetic pyrochlores with strongly-pinned ferromagnetic domain walls, which both exhibit antisymmetric magnetoresistive behavior. By mapping out the peculiar angular variation of the antisymmetric galvanomagnetic response with respect to the relative alignments of the magnetization, magnetic field, and electrical current, we experimentally distinguish two distinct underlying microscopic mechanisms: namely, spin-dependent scattering of a Zeeman-shifted Fermi surface and anomalous electron velocities. Our work demonstrates that the anomalous electron velocity physics typically associated with the anomalous Hall effect is prevalent beyond the ρxy(Hz) channel, and should be understood as a part of the general galvanomagnetic behavior.

Original languageEnglish
Article number216
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

Funding

We are grateful for discussions with H. Chen. Y.F. acknowledges support from the Okinawa Institute of Science and Technology Graduate University (OIST), with subsidy funding from the Cabinet Office, Government of Japan. We also acknowledge the Mechanical Engineering and Microfabrication Support Section of OIST for the usage of shared equipment. The work at Caltech was supported by National Science Foundation Grant No. DMR-1606858. P.A.L. acknowledges support from the US Department of Energy, Basic Energy Sciences, Grant No. DE-FG02-03ER46076. J.-Q.Y. and D.M. acknowledge support from the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering. The work at the Advanced Photon Source of Argonne National Laboratory was supported by the US Department of Energy Basic Energy Sciences under Contract No. NEAC02-06CH11357.

Fingerprint

Dive into the research topics of 'Antisymmetric linear magnetoresistance and the planar Hall effect'. Together they form a unique fingerprint.

Cite this