TY - JOUR
T1 - Analysis of tensile deformation and failure in austenitic stainless steels
T2 - Part I - Temperature dependence
AU - Kim, Jin Weon
AU - Byun, Thak Sang
PY - 2010/1/1
Y1 - 2010/1/1
N2 - This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from tensile test data obtained at -150 to 450 °C using an iterative finite element method. Analysis was largely focused on the necking and fracture: key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The fracture stress and energy decreased with temperature up to 200 °C and were nearly saturated as the temperature came close to the maximum test temperature 450 °C. The fracture strain had a maximum at -50 to 20 °C before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.
AB - This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from tensile test data obtained at -150 to 450 °C using an iterative finite element method. Analysis was largely focused on the necking and fracture: key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The fracture stress and energy decreased with temperature up to 200 °C and were nearly saturated as the temperature came close to the maximum test temperature 450 °C. The fracture strain had a maximum at -50 to 20 °C before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.
UR - http://www.scopus.com/inward/record.url?scp=73149098469&partnerID=8YFLogxK
U2 - 10.1016/j.jnucmat.2009.08.010
DO - 10.1016/j.jnucmat.2009.08.010
M3 - Article
AN - SCOPUS:73149098469
SN - 0022-3115
VL - 396
SP - 1
EP - 9
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
IS - 1
ER -